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Abstract
We consider those Gaussian unitary ensembles where the eigenvalues have
prescribed multiplicities, and obtain joint probability density for eigenvalues.
In the simplest case where there is only one multiple eigenvalue t, this leads
to orthogonal polynomials with the Hermite weight perturbed by a factor that
has a multiple zero at t. We show through a pair of ladder operators, that the
diagonal recurrence coefficients satisfy a particular Painlevé IV equation for
any real multiplicity. If the multiplicity is even they are expressed in terms of
the generalized Hermite polynomials, with t as the independent variable.

PACS numbers: 02.30.Gp, 02.10.Yn, 02.30.Hq

1. Introduction

Random matrix ensembles originally conceived to explain the statistical properties of the
energy levels in heavy nuclei [30] has recently seen applications in transport in disordered
systems, string theory and various areas of pure and applied mathematics. In addition to
classical quantities of interest such as the correlation functions, the average of the product
of characteristic polynomials of random matrices were under investigation starting from the
Brezin–Hikami paper [5] (see also [4] and references therein).

From the Painlevé equations point of view the average of a power of characteristic
polynomial in Gaussian unitary ensemble gives a τ -function of the rational solution of
Painlevé IV equation. For the integer powers this can be seen from the original Kajiwara–Ohta
determinant formula for the rational solutions of PIV ([16], cf [22]) and it was later explored
by Forrester and Witte [13].

In this paper we consider the degenerate Gaussian unitary ensembles. That is, we
restrict ourselves to the nonlinear subspace of Hermitian matrices having prescribed spectrum
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degeneracy. Various statistical properties on eigenvalues of such matrices can be asked.
The first natural question we answer is the determination of the joint probability density
of the eigenvalues when these have some multiplicity. It happens that as in the case
of classical ensembles (see [20]) the joint probability density has the form of product of
pairwise differences between the different eigenvalues taken in the powers depending on the
multiplicities. Thus we naturally arrive to considering orthogonal polynomials with Hermite
weight perturbed (multiplied) by a product of linear factors.

These types of weights also appear in the random matrix theory in consideration of the
averages of characteristic polynomials (see [2, 5]), although in that case the zeroes of these
factors are the external variables to the matrices of the ensembles. We note that an orthogonal
circular random matrix ensemble with fixed degenerate eigenvalue at 1 was considered by
Snaith in [26] in conjectural relation to number theoretic questions on L-functions of elliptic
curves. More general Jacobi circular ensembles were studied recently in [11]. A general
approach to the joint probability density of ensembles of various types was suggested recently
in [1].

We are also motivated by the theory of Calogero–Moser–Sutherland systems. The
ground states of these systems at appropriate interaction parameter coincide with the joint
probability densities of eigenvalues in the classical ensembles. The joint probability density
for degenerate ensembles coincides with the factorized wavefunction for the appropriate
multi-species generalization of Calogero–Moser problem considered in [12]. This type of
generalization is integrable in the case of two types of particles [6, 24]. More remarkably,
Sergeev and Veselov showed that the corresponding quantum Hamiltonian can be obtained
by applying a restriction procedure on the Calogero–Moser–Sutherland Hamiltonian in the
infinite dimensional space to the appropriate discriminant [25]. We plan to elaborate these
relations in future.

In the context of orthogonal polynomials, perturbations of the standard weights such as
the Jacobi weight by special factors is an important topic of investigation, where the problem
is the determination of the recurrence coefficients from the weights (see [19, 21] and the
references therein). In particular, it was noted by Magnus in [18] that often the variations
lead to the recurrence coefficients which are solutions to the nonlinear equations. In some
cases the appearance of Painlevé IV for the certain exponential weights was established [18].
More recently, it was shown in [10] that the diagonal recurrence coefficient associated with
the Hermite weight perturbed by special discontinuous factor satisfies a particular Painlevé IV.

In this paper we show that when the Hermite weight is perturbed by a linear factor having
multiple zero the diagonal recurrence coefficients satisfy a particular two-parameter Painlevé
IV equation. This property in fact holds for an arbitrary real power of the linear factor. Our
approach is direct, it is based on an extension of the ladder operators technique developed
in [7]. In section 3 we describe this method, suitable for orthogonal polynomials where
the weight has isolated zeros, in particular we derive a pair of fundamental compatibility
conditions (S1) and (S2). In section 4 we make use of these to generate nonlinear difference
equations satisfied by the recurrence coefficients. These difference equations when combined
with the Toda equations give a PIV equation satisfied by the recurrence coefficients αn.

In the cases of the weights arising from degenerate Gaussian ensembles having one
multiple eigenvalue t of degeneracy K the multiplicity of the linear factor in the weight is
2K . In this case the recurrence coefficients are rational as functions of t. The theory of
rational solutions to PIV [22] results in the expression of the recurrence coefficients through
the generalized Hermite polynomials.

We also mention here that the Hankel determinants associated with the Hermite weights
perturbed by a factor are related to the Hankel determinants of the Hermite weight with the
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addition of δ-function and its derivatives [15]. For an alternative derivation using Heine’s
multiple integral see [8].

2. Non-generic random matrices

Let HN be the space of Hermitian matrices of size N and let m = (m1,m2, . . . , mk) be a
partition of N. Consider the (nonlinear) subspace Hm

N in HN consisting of matrices having
the eigenvalues with prescribed multiplicities m1, . . . , mk . That is, we suppose the spectrum
{λ1, . . . , λN } of an arbitrary element A ∈ Hm

N has the multiplicities described below:

µ1 = λ1 = · · · = λm1 ,

µ2 = λm1+1 = · · · = λm1+m2 ,

...

µk = λm1+m2+···+mk−1+1 = · · · = λN,

(2.1)

where we have renamed the eigenvalues as µ1, . . . , µk without repetitions.
As every Hermitian matrix A is diagonalizable, we have

A = U�U−1, (2.2)

where � = diag(λ1, . . . , λN), and U is unitary. The matrix U is constructed out of a
certain orthonormal basis where A becomes diagonal. Such a basis is defined up to unitary
transformations leaving the eigenspaces invariant. Therefore U is determined as an element
of the homogenous space

U ∈ U(N)/U(m1) × · · · × U(mk), (2.3)

where the direct product U(m1) × · · · × U(mk) of unitary matrices of orders m1, . . . , mk is
embedded into U(N) as diagonal block. More precisely, in order to determine U uniquely,
we also assume that the eigenvalues µi, µj having equal multiplicities mi = mj are such that
µi < µj if i < j .

Although the subspace Hm
N , of HN is a measure zero set, we may nonetheless construct a

natural probability measure of the matrices lying in it. The metric

(ds)2 = tr(dH ∗dH) (2.4)

is well defined in the subspace Hm
N . Therefore this metric also naturally defines a measure

on the subspace Hm
N , via the Riemann volume formula. It happens, just like in the case

of Hermitian matrices with distinct eigenvalues, with the spectral decomposition (2.2) , the
measure onHm

N is a product of a measure on the eigenvalues and a measure on the homogeneous
space (2.3).

Proposition 1. The metric (2.4) restricted to the subspace Hm
N has the form

(ds)2 =
k∑

i=1

mi dµ2
i + 2

∑
1�i<j�k

(µi − µj)
2(dsij )

2,

where

(dsij )
2 =

∑
m1+···+mi−1+1�α�m1+···+mi

m1+···+mj−1+1�β�m1+···+mj

(U−1 dU)αβ(U
−1

dU)αβ. (2.5)

The corresponding volume form on Hm
N is

dµ =
∏

1�i<j�k

(µi − µj)
2mimj

k∏
i=1

dµi dν(U), (2.6)

where dν(U) is invariant measure on the homogeneous space (2.3).
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Proof. From decomposition (2.2) we obtain

dA = U
(
d� + U ∗dU� − �U ∗dU

)
U ∗.

Then the metric (2.4) can be rewritten as follows:

(ds)2 = tr((d�)2 + 2(δU� − �δU) d� + (�δU)2 + (δU�)2 − 2δU�2δU),

where δU := U−1dU and we have used the cyclic property of the trace. Simplifying this
further we arrive at

(ds)2 = tr


(d�)2 + 2

∑
i �=j

(
λiλj δUij δUji − λ2

i δUij δUji

) ,

and since δU is anti-Hermitian we get (cf, e.g., [14, 29]) that the above reduces to

(ds)2 =
N∑

i=1

(dλi)
2 + 2

∑
1�i<j�N

(λi − λj )
2δUij δUij .

Recalling the degeneracy conditions (2.1) we note that some of the terms vanish and the
restricted metric takes the form

(ds)2 =
k∑

i=1

mi(dµi)
2 + 2

∑
1�i<j�k

(µi − µj)
2(dsij )

2, (2.7)

where dsij is defined in (2.5). The second sum in (2.7) is well defined in the homogeneous
space.

To determine the corresponding measure we fix locally the section of the representatives of
the coset classes and consider coordinates uαβ such that duαβ = (U−1 dU)αβ , where the indices
α < β are such that (αβ) /∈ �. Here � is the diagonal block containing U(m1)×· · ·×U(mk).
Such local coordinates uαβ will exist if the section is chosen to satisfy δUij = 0 when (ij) ∈ �.
Then taking the real and imaginary parts Re uαβ, Im uαβ , as real coordinates the metric (2.7)
becomes a diagonal metric gii and the term 2(µi − µj)

2 appears 2mimj times along the
diagonal. From the Riemann volume formula, the measure corresponding to (2.7) is

M∏
i=1

√
|gii |

k∏
i=1

dµi

∏
(αβ)/∈�
α<β

d Re uαβ d Im uαβ,

where
M∏
i=1

√
|gii | =

∏
1�i<j�k

2mimj (µi − µj)
2mimj

k∏
i=1

m
1/2
i ,

and M = dimHm
N . Thus we obtain the result (2.6) with the measure dν(U) given by

dν(U) =
k∏

i=1

m
1/2
i

∏
(αβ)/∈�
α<β

(U−1dU)αβ(U
−1

dU)αβ.

�

Remark 1. A large class of generalized random matrix ensembles was recently considered in
[1] where a formula for joint probability density of the eigenvalues was obtained. Expression
(2.6) may be obtained from that work.
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Remark 2. One way to generalize proposition 1 is to consider real symmetric matrices with
multiple spectrum, then angular variables are given by a factor in the orthogonal group. Same
arguments as above lead to the following joint probability density of eigenvalues:

∏
1�i<j�k

(µi − µj)
mimj

k∏
i=1

dµi.

Another possibility is to consider degenerate circular ensembles that is unitary (or other)
ensembles with given spectrum multiplicities. In this case the calculation of joint probability
density results in taking the appropriate powers of nontrivial Cartan roots.

It is a well-known result of random matrix theory [20] that the partition function of any
unitary invariant matrix ensemble defined by the multiple integral

�N [w] := 1

N !

∫ b

a

· · ·
∫ b

a

∏
1�i<j�N

(xi − xj )
2

N∏
k=1

w(xk) dxk, (2.8)

has the alternative representations, namely

�N [w] = det

(∫ b

a

xi+jw(x) dx

)N−1

i,j=0

(2.9)

= det

(∫ b

a

pi(x)pj (x)w(x) dx

)N−1

i,j=0

, (2.10)

where pl(x) is an arbitrary monic polynomials of exact degree l. Now if we orthogonalize
these with respect to the weight w over [a, b], namely,∫ b

a

pi(x)pj (x)w(x) dx = hiδi,j ,

where hi, i ∈ N is the square of the L2 norm, then (2.8) becomes

�N [w] =
N−1∏
j=0

hj . (2.11)

For the generic Gaussian unitary ensembles, w(x) = exp(−x2), x ∈ R. In the case of a single
degenerate eigenvalue t with K-fold degeneracy and the rest, n eigenvalues are distinct, such
that N = n + K , we find, by relabelling, µ1 = t, µ2 = x1, . . . , µk = xn, the partition function
reads

�n+K =
∫ ∞

−∞
e−Kt2

Dn(t) dt, (2.12)

where

Dn(t) = 1

n!

∫ ∞

−∞
· · ·

∫ ∞

−∞

∏
1�i<j�n

(xi − xj )
2

n∏
l=1

(xl − t)2K e−x2
l dxl. (2.13)

We note the partition function expressions (2.12), (2.8) are defined here up to constant multiples
that come from the integration over the corresponding homogeneous spaces.

The weight of orthogonal polynomials associated with integral (2.13) is the Hermite
weight multiplied by an isolated zero, that is,

w(x; t) = exp(−x2)|x − t |2K, x, t ∈ R.
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Other crucial characteristics of random matrix ensembles are the correlation functions of
the eigenvalues. These are obtained by calculating the partition function type integrals (2.8)
when some of the eigenvalues are fixed. In the case of single degenerate eigenvalue those
correlation functions that involve the multiple eigenvalue coincide with the averages of the
powers of characteristic polynomial for the appropriate standard Gaussian unitary ensemble, as
it is immediately seen from (2.12) and (2.13). These averages were obtained in the determinant
form in [5].

3. Ladder operators

We now develop a differentiation formula for the polynomials pn(x) orthogonal with respect
to the weight w0(x)|x − t |γ on the real line, for any smooth reference weight w0 and for
general γ � 0. The derivation given here is similar to what was previously known [7, 9], but
adapted to the situation where the weight vanishes at one point.

From the orthogonality condition, there follows the recurrence relations:

zpn(z) = pn+1(z) + αnpn(z) + βnpn−1(z),

with the initial conditions p0(z) = 1 and β0p−1(z) = 0. The diagonal recurrence coefficients
can then be expressed as

αn = p1(n) − p1(n + 1), (3.1)

where p1(n) are defined by expansions

pn(z) = zn + p1(n)zn−1 + · · · . (3.2)

The coefficients of the orthogonal polynomials will also have t dependence due to the t
dependence of the weight although we denote the polynomials as pn(z).

Since pn(z) is a polynomial of degree n, its derivative is a polynomial of degree n − 1
and can therefore be expressed as a linear combination of pk(z), k = 0, 1, . . . , n − 1, namely,

p′
n(z) =

n−1∑
k=0

Cn,kpk(z). (3.3)

To determine the coefficients Cn,k we use orthogonality relations and the formula

∂x |x − t |γ = δ(x − t)((x − t)γ − (t − x)γ ) + γ
|x − t |γ
x − t

. (3.4)

We have

Cn,k = 1

hk

∫ ∞

−∞
p′

n(y)pk(y)w0(y)|y − t |γ dy

= − 1

hk

∫ ∞

−∞
pn(y)pk(y)(w′

0(y)|y − t |γ + w0(y)∂y |y − t |γ ) dy

= − 1

hk

∫ ∞

−∞
pn(y)pk(y)(v′

0(z) − v′
0(y))w(y, t) dy

− γ

hk

∫ ∞

−∞
pn(y)pk(y)w0(y)

|y − t |γ
y − t

dy

= − 1

hk

∫ ∞

−∞
pn(y)pk(y)(v′

0(z) − v′
0(y))w(y, t) dy

− γ

hk

∫ ∞

−∞

pn(y)pk(y)

y − t
w(y, t) dy, (3.5)

where we used notation v0(z) = − log w0(z).
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We note that analogous consideration of Cn,n = 0 implies∫ ∞

−∞
p2

n(y)v′
0(y)w(y, t) dy = γ

∫ ∞

−∞

p2
n(y)

y − t
w(y, t) dy, (3.6)

also the property Cn,n−1 = n implies the following Freud equation:

n = 1

hn−1

∫ ∞

−∞
pn(y)pn−1(y)v′

0(y)w(y, t) dy − γ

hn−1

∫ ∞

−∞

pn(y)pn−1(y)

y − t
w(y, t) dy. (3.7)

Substitution of Cn,k into (3.3) and summation over k using the Christoffel–Darboux
formula

n−1∑
j=0

pj (x)pj (y)

hj

= pn(x)pn−1(y) − pn(y)pn−1(x)

hn−1(x − y)
,

produces the differentiation formula

p′
n(z) = −Bn(z)pn(z) + βnAn(z)pn−1(z), (3.8)

where

An(z) := 1

hn

∫ ∞

−∞

v′
0(z) − v′

0(y)

z − y
p2

n(y)w(y, t) dy + an(z, t)

an(z, t) := γ

hn

∫ ∞

−∞

p2
n(y)

(y − t)(z − y)
w(y, t) dy

Bn(z) := 1

hn−1

∫ ∞

−∞

v′
0(z) − v′

0(y)

z − y
pn(y)pn−1(y)w(y, t) dy + bn(z, t)

bn(z, t) := γ

hn−1

∫ ∞

−∞

pn(y)pn−1(y)

(y − t)(z − y)
w(y, t) dy.

(3.9)

Equation (3.8) is the ‘lowering’ operator.
A direct calculation produces two fundamental compatibility conditions valid for all z:

Bn+1(z) + Bn(z) = (z − αn)An(z) − v′
0(z), (S1)

1 + (z − αn)(Bn+1(z) − Bn(z)) = βn+1An+1(z) − βnAn−1(z), (S2)

where we have used (3.6) to arrive at (S1). Without going into detail, we mention here that if
the factor |x − t |γ in the weight w(x, t) is replaced by

N∏
j=1

|x − tj |γj ,

then (S1) and (S2) still hold and the only changes are

an(z, t1, . . . , tN ) =
N∑

j=1

γj

hn

∫ ∞

−∞

p2
n(y)

(y − tj )(z − y)
w(y, t1, . . . , tN ) dy, (3.10)

bn(z, t1, . . . , tN ) =
N∑

j=1

γj

hn−1

∫ ∞

−∞

pn(y)pn−1(y)

(y − tj )(z − y)
w(y, t1, . . . , tN ) dy. (3.11)

Using (S1) and recurrence relations we have the ‘raising’ operator,

p′
n−1(z) = (Bn(z) + v′

0(z))pn−1(z) − An−1(z)pn(z). (3.12)

In the next section we take w0(x) = exp(−x2), and make use of (S1) and (S2) to produce a
pair of nonlinear difference equations satisfied by the recurrence coefficients for fixed t. These
when combined with the t-evolution equations satisfied by the recurrence coefficients result
in a particular Painlevé IV.
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4. Derivation of the Painlevé equation

For w(x, t) = exp(−x2)|x − t |γ , v0(x) = x2, we find

An(z) = 2 + an(z, t) (4.1)

Bn(z) = bn(z, t). (4.2)

For z near ∞, with fixed t, we obtain the following asymptotic expansions:

an(z, t) ∼ 2αn

z
+

γ + 2tαn

z2
+

γ t + γαn + 2t2αn

z3
+ · · · (4.3)

bn(z, t) ∼ 2βn − n

z
+

t (2βn − n)

z2
+

γβn + t2(2βn − n)

z3
+ · · · , (4.4)

where the coefficients are determined from orthogonality, the recurrence relations, (3.6)
and (3.7).

Substituting the asymptotic expansions into (S1) and (S2), we find, by comparing the
coefficients of 1/zj , two difference equations satisfied by αn and βn:

βn+1 + βn = n +
1

2
+

γ

2
+ αn(t − αn) (4.5)

(t − αn)

(
βn+1 − βn − 1

2

)
= βn+1αn+1 − βnαn−1. (4.6)

Remark 3. If γ = 0, then αn = 0, thus (4.5) and (4.6) become βn+1 + βn = n + 1/2 and
βn+1 − βn = 1/2, respectively. The solution of these equations, subject to the initial condition
β0 = 0 is βn = n/2, which is the recurrence coefficients of the Hermite polynomials.

Remark 4. If t = 0, then αn = 0, then (4.5) becomes βn+1 + βn = n + (1 + γ )/2. The unique
solution subject to the initial condition β0 = 0 is βn = n/2 + γ (1 − (−1)n)/4, which is the
recurrence coefficient of what Szegö called the generalized Hermite polynomials (see [27],
problem 25). These should not be confused with the generalized Hermite polynomials which
arise in the rational solutions of Painlevé IV (see next section).

To study the t-evolution of the recurrence coefficients we begin by taking a derivative
with respect to t of the squared norm hn of the nth orthogonal polynomial

∂thn

hn

= γ

hn

∫ ∞

−∞

p2
n(y)

t − y
w(y, t) dy = −2αn, (4.7)

where the last equality is obtained by using relation (3.6) and noting that v′
0(y) = 2y. Since

βn = hn/hn−1, equation (4.7) implies

∂tβn

βn

= 2(αn−1 − αn). (4.8)

Differentiating relation

0 =
∫ ∞

−∞
pn(y)pn−1(y)w(y, t) dy,

with respect to t, we find

0 = hn−1∂tp1(n) +
∫ ∞

−∞
pn(y)pn−1(y)w0(y)∂t |y − t |γ dy,
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where function p1(n) was defined in (3.2). Using the Freud equation (3.7) we now get

∂tp1(n) = γ

hn−1

∫ ∞

−∞

pn(y)pn−1(y)

y − t
w(y, t) dy

= 2

hn−1

∫ ∞

−∞
ypn(y)pn−1(y)w(y, t) dy − n = 2βn − n. (4.9)

In view of relation (3.1),

∂tαn = 2(βn − βn+1) + 1. (4.10)

Equations (4.8) and (4.10) are the Toda evolution equations.
We now show that D̃n := Dn exp(nt2) satisfies the Toda molecule equation (cf [23]).

First note that
n−1∑
j=0

αj = −p1(n) and βn = Dn+1Dn−1

D2
n

.

Equation (4.7) together with (4.9) implies

∂2
t log Dn = 4

Dn+1Dn−1

D2
n

− 2n,

and hence

∂2
t log D̃n = 4

D̃n+1D̃n−1

D̃2
n

,

which is the Toda molecule equation.
To proceed further, we parameterize βn as

βn = n

2
+

rn

2
+

γ

4
, r0 = −γ

2
, (4.11)

then relation (4.5) becomes
rn+1 + rn

2
= (t − αn)αn. (4.12)

Multiplying relation (4.6) by αn and using the previous relation we get

r2
n+1 − r2

n

4
= αnαn+1βn+1 − αnαn−1βn.

Therefore

r2
n

4
= αnαn−1

(n

2
+

rn

2
+

γ

4

)
+ a,

where a does not depend on n. Taking into account the initial condition r0 = − γ

2 we obtain
the equation

r2
n = 2

(
n + rn +

γ

2

)
αnαn−1 +

γ 2

4
. (4.13)

In terms of the variables rn, the Toda equations (4.8) and (4.10) become

αn−1 = αn +
1

2
(
n + rn + γ

2

)∂t rn, (4.14)

and

∂tαn = rn − rn+1, (4.15)
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respectively. Eliminating rn+1 from equations (4.15) and (4.12) produces

rn = αn(t − αn) + 1
2∂tαn. (4.16)

To get the differential equation on αn we substitute expressions (4.14) and (4.16) into (4.13):(
αn(t − αn) +

α′
n

2

)2

= (2n + 2αn(t − αn) + α′
n + γ )α2

n + αn

(
αn(t − αn) +

α′
n

2

)′
+

γ 2

4
.

After simplification we obtain the following result.

Theorem 1. The recurrent coefficients αn(t) satisfy

α′′
n = α′2

n

2αn

+ 6α3
n − 8tα2

n + 2(t2 − γ − 2n − 1)αn − γ 2

2αn

, (4.17)

which is a particular fourth Painlevé equation.

5. Explicit solutions for even multiplicity

Painlevé IV equation was first represented as a simple system of three first-order equations
(dressing chain) in [28]. Such a symmetric form of PIV was used in [22] to obtain all the
rational solutions of the equation in the remarkable determinant form (simultaneously with
the independent work [16]). We use the notations from Noumi–Yamada [22] to recall their
results and then to use them.

Firstly we bring equation (4.17) to the canonical form by a simple change of variable. Let
y = 2αn and t̃ = −t then (4.17) takes the form

y ′′(̃t) = y ′2

2y
+

3

2
y3 + 4̃ty2 + 2(̃t2 − a)y +

b

y
, (5.1)

where a = 2n + 1 + γ, b = −2γ 2. Then the symmetric form of PIV is a system of first-order
differential equations satisfied by f0 = f0(x), f1 = f1(x), f2 = f2(x), where

f1(x) = −cy(−cx), (5.2)

with c = √−3/2. The system reads as follows:

f ′
0 + f0(f1 − f2) = b0, (5.3)

f ′
1 + f1(f2 − f0) = b1, (5.4)

f ′
2 + f2(f0 − f1) = b2, (5.5)

where

f0 + f1 + f2 = 3x, (5.6)

b0 + b1 + b2 = 3, (5.7)

and parameters of the PIV are suitably expressed in terms of b0, b1 and b2. The PIV equation
can also be written in the bilinear form on the level of τ -functions. The solution of (4.17) may
then be expressed in terms of τ -functions τ0(x), τ1(x), τ2(x) as

f1 = d

dx
log

τ2

τ0
+ x, (5.8)

where the functions τ0 and τ2 will be defined later.
The generalized Hermite polynomials [22] are defined as

Hm,n(x) = det(Pn−i+j (x))mi,j=1, (5.9)
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where

Ps(x) =
∑

i+2j=s

1

6j i!j !
xi. (5.10)

They coincide with the specialization Snm(x, 1
6 , 0, 0, . . .) of Schur polynomials corresponding

to rectangular Young diagrams containing m rows of length n at the values.
Define also the set of functions

um,n(x) = exp

(
−x4

12
+

m − n

2
x2

)
Hm,n(x).

Then the triple

(τ0, τ1, τ2) = (um,n, um+1,n, um,n+1)

leads to a solution of PIV through formulae (5.1)–(5.8) in the case γ = m.

Theorem 2. The recurrent coefficients αn for the weight w(x) = e−x2
(x − t)2K with K ∈ Z+

are given by

αn(t) = −1

2

d

dt
log

H2K,n+1(t/c)

H2K,n(t/c)
,

where Hm,n(x) are defined by (5.9), and c = √−3/2.

Proof. For γ = 2K with K ∈ N the orthogonal polynomials with the weight w(x, t) can
be expressed in terms of Hermite polynomials by the Christoffel formula ([27], p 30), since
w(x, t) is the Hermite weight multiplied by a polynomials in x. It follows from the formula
that the recurrence coefficients αn, βn are rational functions of t. Therefore αn(t) is a rational
solution of equation (5.1) in this case. The rational solution of the PIV equation is unique if
it exists (see [17]) and is expressed in terms of the generalized Hermite polynomials

αn(t) = 1

2
y(−t) = − 1

2c
f1

(
t

c

)
= −1

2

d

dt
log

H2K,n+1(t/c)

H2K,n(t/c)
. �

Remark 5. There is another way to see rationality of αn(t). Indeed, equation (2.13) defines
an even polynomial of degree 2Kn in t, hence, hn(t) = Dn+1(t)/Dn(t), is rational in t and
(4.7) shows that αn(t) is also rational in t.

The above considerations allow us to obtain an expression for the Hankel determinant.
We have seen that (4.7)

αi = −∂thi

2hi

.

Therefore

log hi − log
H2K,i+1(t/c)

H2K,i(t/c)
= const.

So

hi = ai

H2K,i+1(t/c)

H2K,i(t/c)
(5.11)

for some constant ai .

Proposition 2 (cf [5, 13]). The Hankel determinant for the weight w(x) = e−x2
(x − t)2K

with K ∈ Z+ is given by

Dn = AK,nH2K,n(t/c),
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where c = √−3/2, and

AK,n =
n−1∏
i=0

ai = (−1)Knπ
n
2

3KnG(2K + n + 1)

2Kn+ n(n−1)

2 G(2K + 1)

with the Barnes G-function [3] defined by

G(z + 1) = �(z)G(z), G(1) = 1.

Proof. It is clear from (5.11) and the product expression of Dn,

Dn = h0h1 · · · hn−1

where hi are the square of the L2 norm of the monic orthogonal polynomials, that the constant
AK,n in the proposition depends only on n,K, so all we need to do is to determine its value.

Note that the coefficient of t2Kn of Dn(t) is equal to the Hankel determinant associated
with the Hermite weight. Therefore

Dn(t) = t2Knπ
n
2

n−1∏
i=0

i!

2i
+ lower order terms. (5.12)

On the other hand, the leading coefficient of H2K,n(t) is equal to

G(2K + 1)G(n + 1)

G(2K + n + 1)
(5.13)

(see [22]). Combining (5.12) and (5.13) together we get the value of AK,n as stated. �

Remark 6. The Hankel determinant Dn as the average of characteristic polynomial (2.13)
was first computed by Brezin and Hikami in [5] as determinant of Hermite polynomials. The
equivalence of the resulting formulae with the formulae for the τ -functions H2K,n for PIV from
[22] was used by Forrester and Witte in [13] (see also [16]). We have now an explanation for
this coincidence through showing that the diagonal recurrence coefficients αn(t) is a solution
of PIV. We also note that this result can be obtained other way round using (4.7) and [13].
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Math. Ann. 275 221–55
[24] Sergeev A N and Veselov A P 2004 Deformed quantum Calogero–Moser problems and Lie superalgebras

Commun. Math. Phys. 245 249–78
[25] Sergeev A N and Veselov A P 2005 Generalised discriminants, deformed Calogero–Moser–Sutherland operators

and super–Jack polynomials Adv. Math. 192 341–75
[26] Snaith N 2005 Derivatives of random matrix characteristic polynomials with applications to elliptic curves

J. Phys. A: Math. Gen. 38 10345–60
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